Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 116(5): 1163-1174, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792018

RESUMO

PURPOSE: Victims of acute radiation exposure are susceptible to hematopoietic toxicity due to bone marrow damage and loss of mature blood elements. Here, we evaluated cord blood-derived endothelial progenitor cells (CB-EPCs) as a potential cellular therapy for mitigation of hematologic acute radiation syndrome. CB-EPCs express endothelial cell markers and maintain their growth characteristics beyond 10+ passages without diminishing their doubling capacity. Further, CB-EPCs can be cryopreserved in vapor-phase liquid nitrogen and easily recovered for propagation, making them an attractive nonimmunogenic cellular therapy for off-the-shelf use. Importantly, we show CB-EPCs have the capacity to potently expand adult human bone marrow hematopoietic progenitor cells both in vitro and in vivo. METHODS AND MATERIALS: To demonstrate the role of CB-EPCs in promoting in vivo human immune reconstitution after irradiation, we employed a novel humanized mouse model established by transplant of CD34+ bone marrow cells from 9 unique adult organ donors into immunocompromised NSG-SGM3 mice. The response of the humanized immune system to ionizing irradiation was then tested by exposure to 1 Gy followed by subcutaneous treatment of CB-EPCs, Food and Drug Administration-approved growth factor pegfilgrastim (0.3 mg/kg), or saline. RESULTS: At day 7, total human bone marrow was decreased by 80% in irradiated controls. However, treatment with either growth factor pegfilgrastim or CB-EPCs increased recovery of total human bone marrow by 2.5-fold compared with saline. Notably, CB-EPCs also increased recovery of both human CD34+ progenitors by 5-fold and colony-forming capacity by 3-fold versus saline. Additionally, CB-EPCs promoted recovery of endogenous bone marrow endothelial cells as observed by both increased vessel area and length compared with saline. CONCLUSIONS: These findings indicate the feasibility of using humanized mice engrafted with adult bone marrow for radiation research and the development of CB-EPCs as an off-the-shelf cellular therapy for mitigation of hematologic acute radiation syndrome.


Assuntos
Síndrome Aguda da Radiação , Células Progenitoras Endoteliais , Transplante de Células-Tronco Hematopoéticas , Adulto , Humanos , Camundongos , Animais , Medula Óssea , Células-Tronco Hematopoéticas/fisiologia , Sangue Fetal/metabolismo , Síndrome Aguda da Radiação/metabolismo , Células da Medula Óssea , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos
2.
Exp Hematol Oncol ; 11(1): 83, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316713

RESUMO

BACKGROUND: Thioredoxin-1 (TXN1) is one of the major cellular antioxidants in mammals and is involved in a wide range of physiological cellular responses. However, little is known about the roles and the underlying molecular mechanisms of TXN1 in the regulation of hematopoietic stem/progenitor cells (HSPCs). METHODS: TXN1 conditional knockout mice (ROSA-CreER-TXN1fl/fl) and TXN1fl/fl control mice were used. The mice were treated with tamoxifen and the number and biological functions of HSPCs were measured by flow cytometry, PCR and western blot. Limiting dilution competitive transplantation with sorted HSCs and serial transplantations were performed to assess the effects of TXN1 knockout on HSC self-renewal and long-term reconstitutional capacity. RNA sequencing (RNA-seq) was performed to investigate the downstream molecular pathways of TXN1 deletion in murine HSPCs. CRISPR/Cas9 knockout experiments were performed in vitro in EML murine hematopoietic stem/progenitor cell line to investigate the effects of TXN1 and/or TP53 deletion on cell survival, senescence and colony forming units. TP53 protein degradation assay, CHiP PCR and PGL3 firefly/renilla reporter assay were performed. The effects of TXN1 on various molecular pathways relevant to HSC radiation protection were examined in vitro and in vivo. RESULTS: TXN1-TP53 tumor suppressor axis regulates HSPC biological fitness. Deletion of TXN1 in HSPCs using in vivo and in vitro models activates TP53 signaling pathway, and attenuates HSPC capacity to reconstitute hematopoiesis. Furthermore, we found that knocking out of TXN1 renders HSPCs more sensitive to radiation and treatment with recombinant TXN1 promotes the proliferation and expansion of HSPCs. CONCLUSIONS: Our findings suggest that TXN1-TP53 axis acts as a regulatory mechanism in HSPC biological functions. Additionally, our study demonstrates the clinical potential of TXN1 for enhancing hematopoietic recovery in hematopoietic stem cell transplant and protecting HSPCs from radiation injury.

3.
Mol Cancer Res ; 19(5): 886-899, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33514658

RESUMO

The ERBB2 proto-oncogene is associated with an aggressive phenotype in breast cancer. Its role in hematologic malignancies is incompletely defined, in part because ERBB2 is not readily detected on the surface of cancer cells. We demonstrate that truncated ERBB2, which lacks the extracellular domain, is overexpressed on primary CD34+ myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cells compared with healthy hematopoietic cells. This overexpression of ERBB2 is associated with aberrant, oncogenic signaling with autophosphorylation of multiple tyrosine sites. Like in breast cancers, ERBB2 can exist as truncated isoforms p95ERBB2 and p110ERBB2 in MDS and AML. Neutralization of ERBB2 signaling with ERBB2 tyrosine kinase inhibitors (i.e., lapatinib, afatinib, and neratinib) increases apoptotic cell death and reduces human engraftment of MDS cells in mice at 21 weeks posttransplantation. Inhibition of ERBB2 modulates the expression of multiple pro- and anti-apoptotic mitochondrial proteins, including B-cell lymphoma 2 (BCL2). Dual blockade with ERBB2 and BCL2 inhibitors triggers additional reductions of BCL2 phosphorylation and myeloid cell leukemia-1 (MCL1) expression compared with single drug treatment. Dual therapy was synergistic at all tested doses, with a dose reduction index of up to 29 for lapatinib + venetoclax compared with venetoclax alone. Notably, these agents operated together and shifted cancer cells to a pro-apoptotic phenotype, resulting in increased mitochondrial cytochrome c release and activated caspase-3-mediated cell death. IMPLICATIONS: These findings warrant study of ERBB2 and BCL2 combination therapy in patients with MDS and AML. VISUAL OVERVIEW: http://mcr.aacrjournals.org/content/molcanres/19/5/886/F1.large.jpg.


Assuntos
Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Animais , Apoptose , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismo
4.
Radiat Res ; 194(2): 162-172, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32845987

RESUMO

Thrombocytopenia (TCP) may cause severe and life-threatening bleeding. While this may be prevented by platelet transfusions, transfusions are associated with potential complications, do not always work (platelet refractory) and are not always available. There is an urgent need for a synthetic alternative. We evaluated the ability of fibrinogen-coated nanospheres (FCNs) to prevent TCP-related bleeding. FCNs are made of human albumin polymerized into a 100-nm sphere and coated with fibrinogen. We hypothesized that FCNs would bind to platelets through fibrinogen-GPIIb/IIIa interactions, contributing to hemostasis in the setting of TCP. We used two murine models to test these effects: in the first model, BALB/c mice received 7.25 Gy total-body irradiation (TBI); in the second model, lower dose TBI (7.0 Gy) was combined with an anti-platelet antibody (anti-CD41) to induce severe TCP. Deaths in both models were due to gastrointestinal or intracranial bleeding. Addition of antiplatelet antibody to 7.0 Gy TBI significantly worsened TCP and increased mortality compared to 7.0 Gy TBI alone. FCNs significantly improved survival compared to saline control in both models, suggesting it ameliorated TCP-related bleeding. Additionally, in a saphenous vein bleeding model of antibody-induced TCP, FCNs shortened bleeding times. There were no clinical or histological findings of thrombosis or laboratory findings of disseminated intravascular coagulation after FCN treatment. In support of safety, fluorescence microscopy suggests that FCNs bind to platelets only upon platelet activation with collagen, limiting activity to areas of endothelial damage. To our knowledge, this is the first biosynthetic agent to demonstrate a survival advantage in TCP-related bleeding.


Assuntos
Albuminas/química , Fibrinogênio/química , Fibrinogênio/farmacologia , Hemorragia/complicações , Hemorragia/prevenção & controle , Nanosferas , Trombocitopenia/complicações , Animais , Endotélio/metabolismo , Fibrinogênio/metabolismo , Hemorragia/metabolismo , Hemorragia/fisiopatologia , Camundongos , Agregação Plaquetária/efeitos dos fármacos , Análise de Sobrevida
5.
Stem Cell Reports ; 13(1): 76-90, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31155503

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) depend on regulatory cytokines from the marrow microenvironment. From an unbiased cytokine screen of murine marrow supernatants, we identified C-C motif chemokine ligand 5 (CCL5) as an endothelial cell-secreted hematopoietic growth factor. Following treatment with CCL5, hematopoietic regeneration is accelerated and survival is prolonged after radiation. In mice with deletion of Ccr5, hematopoietic regeneration is delayed compared to control mice. Deletion of Ccr5 specifically in hematopoietic cells was sufficient to delay regeneration, while the deletion of Ccr5 in stromal/endothelial cells was not. Mechanistically, CCL5 promotes hematopoietic cell cycling and cell survival. Like murine hematopoietic cells, human hematopoietic cells (cord blood, healthy marrow, and peripheral blood) increase CCR5 expression after radiation exposure to promote cell survival. These data establish that CCL5 and CCR5 signaling play critical roles in hematopoietic regeneration and could serve as therapeutic targets to shorten the duration of myelosuppression.


Assuntos
Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/metabolismo , Radiação Ionizante , Receptores CCR5/metabolismo , Transdução de Sinais , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Medula Óssea/efeitos da radiação , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Relação Dose-Resposta à Radiação , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos da radiação , Humanos , Imunofenotipagem , Camundongos , Receptores CCR5/genética , Transdução de Sinais/efeitos da radiação
6.
Clin Cancer Res ; 25(13): 4155-4167, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952643

RESUMO

PURPOSE: Myelodysplastic syndrome (MDS) is associated with a dysregulated innate immune system. The purpose of this study was to determine whether modulation of the innate immune system via high mobility group box-1 (HMGB1) could reduce cell viability in MDS. EXPERIMENTAL DESIGN: We quantified HMGB1 in an MDS cell line MDS-L and in primary MDS cells compared with nonmalignant hematopoietic cells. We performed loss-of-function studies of HMGB1 using pooled siRNAs and a small-molecule inhibitor sivelestat compared with standard chemotherapy. We measured levels of engraftment of MDS-L cells in NOD-scidIL2Rgnull (NSG) mice following treatment with sivelestat. Mechanistically, we interrogated cell survival pathways and 45 targets within the NFκB pathway using both protein analysis and a proteome profiler array. RESULTS: We discovered that HMGB1 had increased expression in both MDS-L cells and in primary CD34+ MDS cells compared with healthy CD34+ hematopoietic cells. Sivelestat impaired MDS cell expansion, increased cellular death, and spared healthy hematopoietic cells. MDS-L marrow engraftment is reduced significantly at 17 weeks following treatment with sivelestat compared with control mice. Treatment of CD34+ MDS cells with sivelestat and azacitidine or decitabine was additive to increase apoptotic cell death compared with chemotherapy alone. Sivelestat promoted apoptosis with increased expression of PUMA, activated caspase 3, and increased DNA double-strand breaks. Inhibition of HMGB1 reduced levels of Toll-like receptors (TLR) and suppressed activation of NFκB in MDS-L cells. CONCLUSIONS: Inhibition of HMGB1 could promote MDS cell death and alter innate immune responses via suppression of NFκB pathways.


Assuntos
Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/metabolismo , Síndromes Mielodisplásicas/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quebras de DNA de Cadeia Dupla , Suscetibilidade a Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Proteína HMGB1/genética , Humanos , Imunidade Inata , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Camundongos Knockout , Mutação , Síndromes Mielodisplásicas/etiologia , NF-kappa B/metabolismo , Receptores Toll-Like/metabolismo
7.
Int J Radiat Oncol Biol Phys ; 104(2): 291-301, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30763662

RESUMO

PURPOSE: Extracellular vesicles (EVs) are shed vesicles that bear a combination of nucleic acids and proteins. EVs are becoming recognized as a mode of cell-to-cell communication. Because hematopoietic stem cells reside in proximity to endothelial cells (ECs), we investigated whether EC-derived EVs could regulate hematopoietic stem cell regeneration after ionizing radiation. METHODS AND MATERIALS: We generated EVs derived from primary murine marrow ECs. We sought to determine the response of irradiated hematopoietic stem and progenitor cells to syngeneic or allogeneic EVs in culture assays. Starting 24 hours after either sublethal or lethal irradiation, mice were treated with EVs or saline or cultured primary marrow endothelial cells to determine the hematopoietic response in vivo. RESULTS: We demonstrate that EVs bear nuclear material and express EC-specific markers. Treatment with EVs promoted cell expansion and increased the number of colony-forming units compared to irradiated, hematopoietic cell cultures treated with cytokines alone. After total body irradiation, EV-treated mice displayed preserved marrow cellularity, marrow vessel integrity, and prolonged overall survival compared with controls treated with saline. Treatment of irradiated hematopoietic stem/progenitor cells (HSPCs) with EVs from different genetic strains showed results similar to treatment of HSPCs from syngeneic EVs. Mechanistically, treatment of irradiated HSPCs with EVs resulted in decreased levels of annexin V+ apoptotic cell death, which is mediated in part by tissue inhibitor of metalloproteinase-1. CONCLUSIONS: Our findings show that syngeneic or allogeneic EVs could serve as cell-derived therapy to deliver physiologic doses of nucleic acids and growth factors to hematopoietic cells to accelerate hematopoietic regeneration.


Assuntos
Células Endoteliais , Vesículas Extracelulares , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Hematopoéticas/efeitos da radiação , Lesões por Radiação/terapia , Regeneração , Animais , Anexina A5/metabolismo , Apoptose , Comunicação Celular , Proliferação de Células , Sobrevivência Celular , Vesículas Extracelulares/fisiologia , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Inibidor Tecidual de Metaloproteinase-1/análise , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Irradiação Corporal Total
8.
Stem Cells ; 36(2): 252-264, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29086459

RESUMO

Hematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression. Following 5-fluorouracil (5-FU), EGF accelerated hematopoietic stem cell regeneration and prolonged survival compared with saline-treated mice. To mitigate chemotherapy-induced injury to endothelial cells in vivo, we deleted Bax in VEcadherin+ cells (VEcadherinCre;BaxFL/FL mice). Following 5-FU, VEcadherinCre;BaxFL/FL mice displayed preserved hematopoietic stem/progenitor content compared with littermate controls. 5-FU and EGF treatment resulted in increased cellular proliferation, decreased apoptosis, and increased DNA double-strand break repair by non-homologous end-joining recombination compared with saline-treated control mice. When granulocyte colony stimulating factor (G-CSF) is given with EGF, this combination was synergistic for regeneration compared with either G-CSF or EGF alone. EGF increased G-CSF receptor (G-CSFR) expression following 5-FU. Conversely, G-CSF treatment increased both EGF receptor (EGFR) and phosphorylation of EGFR in hematopoietic stem/progenitor cells. In humans, the expression of EGFR is increased in patients with colorectal cancer treated with 5-FU compared with cancer patients not on 5-FU. Similarly, EGFR signaling is responsive to G-CSF in humans in vivo with both increased EGFR and phospho-EGFR in healthy human donors following G-CSF treatment compared with donors who did not receive G-CSF. These data identify EGF as a hematopoietic growth factor following myelosuppressive chemotherapy and that dual therapy with EGF and G-CSF may be an effective method to accelerate hematopoietic regeneration. Stem Cells 2018;36:252-264.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Fluoruracila/farmacologia , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
9.
Dig Dis Sci ; 61(3): 806-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26537485

RESUMO

BACKGROUND: Graft-versus-host disease (GVHD) complicates half of hematopoietic stem cell transplants (HCT), and the gastrointestinal tract is commonly affected. Endoscopic biopsies have a key role in the diagnosis. The optimal procedure(s) to perform and site(s) to biopsy remain unclear. METHODS: We retrospectively analyzed the charts of all adult patients who underwent allogeneic HCT at Duke University Medical Center between 1/1/05 and 1/1/11 and extracted data from those who underwent endoscopic biopsy for suspected GVHD. All histology was re-evaluated by blinded pathologists using 2006 NIH diagnostic criteria and then compared to the original clinical diagnosis of GVHD. RESULTS: A total of 169 adult patients underwent 250 endoscopic procedures to evaluate GVHD. The sensitivity of biopsies for clinical GVHD was 76 and 72% for upper and lower tract sites, respectively. In the presence of nausea, upper tract biopsies were positive for GVHD in 65%, 70% while lower tract biopsies were positive in 61-70%. In the presence of diarrhea, lower tract biopsies were positive in 65%, while upper tract sites were positive in 64-69%. Twenty six (40%) of the sixty-five endoscopies that simultaneously sampled upper and lower tract sites had discordant results. All were histologically positive for GVHD, yet 15% of upper tract biopsies and 25% of lower tract biopsies were negative. CONCLUSIONS: In this large review, the overall sensitivity of biopsies taken during EGD and Flex-Sig was 76 and 72%, respectively. A symptom-driven biopsy approach was not clearly supported as upper tract and lower tract biopsies were similarly diagnostic for GVHD regardless of symptoms.


Assuntos
Gastroenteropatias/diagnóstico , Trato Gastrointestinal/patologia , Doença Enxerto-Hospedeiro/diagnóstico , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas , Adulto , Idoso , Biópsia , Estudos de Coortes , Diarreia/etiologia , Endoscopia Gastrointestinal , Feminino , Gastroenteropatias/complicações , Gastroenteropatias/patologia , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/patologia , Doenças Hematológicas/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Náusea/etiologia , Estudos Retrospectivos , Adulto Jovem
10.
Genes Dev ; 28(9): 995-1004, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24788518

RESUMO

Accidental or deliberate ionizing radiation exposure can be fatal due to widespread hematopoietic destruction. However, little is known about either the course of injury or the molecular pathways that regulate the subsequent regenerative response. Here we show that the Wnt signaling pathway is critically important for regeneration after radiation-induced injury. Using Wnt reporter mice, we show that radiation triggers activation of Wnt signaling in hematopoietic stem and progenitor cells. ß-Catenin-deficient mice, which lack the ability to activate canonical Wnt signaling, exhibited impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. We found that, as part of the mechanism, hematopoietic stem cells lacking ß-catenin fail to suppress the generation of reactive oxygen species and cannot resolve DNA double-strand breaks after radiation. Consistent with the impaired response to radiation, ß-catenin-deficient mice are also unable to recover effectively after chemotherapy. Collectively, these data indicate that regenerative responses to distinct hematopoietic injuries share a genetic dependence on ß-catenin and raise the possibility that modulation of Wnt signaling may be a path to improving bone marrow recovery after damage.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Estresse Oxidativo/genética , Regeneração/genética , beta Catenina/genética , beta Catenina/metabolismo , Animais , Antineoplásicos/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Fluoruracila/farmacologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Estimativa de Kaplan-Meier , Camundongos , Estresse Oxidativo/efeitos da radiação , Lesões por Radiação/genética , Espécies Reativas de Oxigênio/metabolismo , Regeneração/efeitos dos fármacos , Regeneração/efeitos da radiação , Transdução de Sinais , Via de Sinalização Wnt/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...